arXiv Analytics

Sign in

arXiv:0910.3867 [math.FA]AbstractReferencesReviewsResources

Greedy bases for Besov spaces

S. J. Dilworth, D. Freeman, E. Odell, Th. Schlumprecht

Published 2009-10-20Version 1

We prove thatthe Banach space $(\oplus_{n=1}^\infty \ell_p^n)_{\ell_q}$, which is isomorphic to certain Besov spaces, has a greedy basis whenever $1\leq p \leq\infty$ and $1<q<\infty$. Furthermore, the Banach spaces $(\oplus_{n=1}^\infty \ell_p^n)_{\ell_1}$, with $1<p\le \infty$, and $(\oplus_{n=1}^\infty \ell_p^n)_{c_0}$, with $1\le p<\infty$ do not have a greedy bases. We prove as well that the space $(\oplus_{n=1}^\infty \ell_p^n)_{\ell_q}$ has a 1-greedy basis if and only if $1\leq p=q\le \infty$.

Categories: math.FA
Subjects: 46B15, 41A65
Related articles: Most relevant | Search more
arXiv:2304.05888 [math.FA] (Published 2023-04-12)
Counterexamples in isometric theory of symmetric and greedy bases
arXiv:1403.3777 [math.FA] (Published 2014-03-15)
Renorming spaces with greedy bases
arXiv:2208.10203 [math.FA] (Published 2022-08-22)
Existence of almost greedy bases in mixed-norm sequence and matrix spaces, including Besov spaces