arXiv Analytics

Sign in

arXiv:0909.5636 [astro-ph.SR]AbstractReferencesReviewsResources

Turbulence, Complexity, and Solar Flares

R. T. James McAteer, Peter T. Gallagher, Paul A. Conlon

Published 2009-09-30Version 1

The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.

Related articles: Most relevant | Search more
arXiv:1102.4661 [astro-ph.SR] (Published 2011-02-23)
Chemical spots in the absence of magnetic field in the binary HgMn star 66 Eridani
arXiv:1402.3245 [astro-ph.SR] (Published 2014-02-13)
Discovery of a magnetic field in the B pulsating system HD 1976
arXiv:1008.0409 [astro-ph.SR] (Published 2010-08-02)
Lowering the Characteristic Mass of Cluster Stars by Magnetic Fields and Outflow Feedback