arXiv Analytics

Sign in

arXiv:0909.2072 [math.CA]AbstractReferencesReviewsResources

A Characterization of Hajłasz-Sobolev and Triebel-Lizorkin Spaces via Grand Littlewood-Paley Functions

Pekka Koskela, Dachun Yang, Yuan Zhou

Published 2009-09-11, updated 2009-11-02Version 2

In this paper, we establish the equivalence between the Haj{\l}asz-Sobolev spaces or classical Triebel-Lizorkin spaces and a class of grand Triebel-Lizorkin spaces on Euclidean spaces and also on metric spaces that are both doubling and reverse doubling. In particular, when $p\in(n/(n+1),\infty)$, we give a new characterization of the Haj{\l}asz-Sobolev spaces $\dot M^{1, p}({\mathbb R}^n)$ via a grand Littlewood-Paley function.

Related articles: Most relevant | Search more
arXiv:1105.5987 [math.CA] (Published 2011-05-30)
A Characterization of the boundedness of the median maximal function on weighted L^p spaces
arXiv:1809.00284 [math.CA] (Published 2018-09-02)
New Characterizations of Musielak-Orlicz-Sobolev Spaces via Sharp Ball Averaging Functions
arXiv:1901.05600 [math.CA] (Published 2019-01-17)
Applications of Hardy Spaces Associated with Ball Quasi-Banach Function Spaces