arXiv:0909.1080 [quant-ph]AbstractReferencesReviewsResources
NMR Quantum Calculations of the Jones Polynomial
Raimund Marx, Amr Fahmy, Louis Kauffman, Samuel Lomonaco, Andreas Spörl, Nikolas Pomplun, John Myers, Steffen J. Glaser
Published 2009-09-06Version 1
The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones Polynomial by nuclear-magnetic resonance (NMR), in addition we show how to escape from the limitations of NMR approaches that employ pseudo pure states. Specifically, we use two spin 1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the Trefoil Knot, the Figure Eight Knot and the Borromean Rings. After measuring the state of the molecule in each case, we are able to estimate the value of the Jones Polynomial for each of the knots.