arXiv Analytics

Sign in

arXiv:0909.0393 [math.LO]AbstractReferencesReviewsResources

On Recognizable Tree Languages Beyond the Borel Hierarchy

Olivier Finkel, Pierre Simonnet

Published 2009-09-02Version 1

We investigate the topological complexity of non Borel recognizable tree languages with regard to the difference hierarchy of analytic sets. We show that, for each integer $n \geq 1$, there is a $D_{\omega^n}({\bf \Sigma}^1_1)$-complete tree language L_n accepted by a (non deterministic) Muller tree automaton. On the other hand, we prove that a tree language accepted by an unambiguous B\"uchi tree automaton must be Borel. Then we consider the game tree languages $W_{(i,k)}$, for Mostowski-Rabin indices $(i, k)$. We prove that the $D_{\omega^n}({\bf \Sigma}^1_1)$-complete tree languages L_n are Wadge reducible to the game tree language $W_{(i, k)}$ for $k-i \geq 2$. In particular these languages $W_{(i, k)}$ are not in any class $D_{\alpha}({\bf \Sigma}^1_1)$ for $\alpha < \omega^\omega$.

Comments: To appear in Fundamenta Informaticae
Journal: Fundamenta Informaticae 95, 2-3 (2009) 287-303
Categories: math.LO, cs.CC, cs.LO
Related articles: Most relevant | Search more
arXiv:0704.3998 [math.LO] (Published 2007-04-30)
Long Borel Hierarchies
arXiv:0902.1732 [math.LO] (Published 2009-02-10)
On the Borel Inseparability of Game Tree Languages
arXiv:math/0702334 [math.LO] (Published 2007-02-12)
An Example of Pi^0_3-complete Infinitary Rational Relation