arXiv Analytics

Sign in

arXiv:0908.3316 [math.DS]AbstractReferencesReviewsResources

Semigroups of real functions with dense orbits

Mohammad Javaheri

Published 2009-08-23Version 1

Let ${\mathcal F}_I=\{f:I \to I| f(x)= (Ax+B)/(Cx+D); AD-BC \neq 0 \}$, where $I$ is an interval. For $x\in I$, let ${\Omega}_x$ be the orbit of $x$ under the action of the semigroup of functions generated by $f,g \in {\mathcal F}_I$. Our main result in this paper is to describe all $f,g \in {\mathcal F}_I$ such that $\Omega_x$ is dense in $I$ for all $x$.

Comments: 18 pages
Categories: math.DS
Subjects: 37E05, 37B05, 26A09
Related articles: Most relevant | Search more
arXiv:0905.1311 [math.DS] (Published 2009-05-08, updated 2010-04-09)
Semigroups of matrices with dense orbits
arXiv:math/0410505 [math.DS] (Published 2004-10-23, updated 2004-10-27)
The Rokhlin lemma for homeomorphisms of a Cantor set
arXiv:math/0410481 [math.DS] (Published 2004-10-22, updated 2006-07-06)
The Real 3x+1 Problem