arXiv:0908.0289 [math.AG]AbstractReferencesReviewsResources
A classification of terminal quartic 3-folds and applications to rationality questions
Published 2009-08-03Version 1
This paper studies the birational geometry of terminal Gorenstein Fano 3-folds. If Y is not Q-factorial, in most cases, it is possible to describe explicitly the divisor class group Cl Y by running a Minimal Model Program (MMP) on X, a small Q-factorialisation of Y. In this case, Weil non-Cartier divisors are generated by "topological traces " of K-negative extremal contractions on X. One can show, as an application of these methods, that a number of families of non-factorial terminal Gorenstein Fano 3-folds are rational. In particular, I give some examples of rational quartic hypersurfaces with Cl Y of rank 2, and show that when Cl Y has rank greater than 6, Y is always rational.
Related articles: Most relevant | Search more
Families of D-minimal models and applications to 3-fold divisorial contractions
arXiv:1008.3248 [math.AG] (Published 2010-08-19)
On a theorem of Castelnuovo and applications to moduli
arXiv:1507.01860 [math.AG] (Published 2015-06-30)
Boundedness of the images of period maps and applications