arXiv:0908.0271 [math-ph]AbstractReferencesReviewsResources
Can solvable extensions of a nilpotent subalgebra be useful in the classification of solvable algebras with the given nilradical?
Published 2009-08-03Version 1
We construct all solvable Lie algebras with a specific n-dimensional nilradical n_{n,3} which contains the previously studied filiform nilpotent algebra n_{n-2,1} as a subalgebra but not as an ideal. Rather surprisingly it turns out that the classification of such solvable algebras can be reduced to the classification of solvable algebras with the nilradical n_{n-2,1} together with one additional case. Also the sets of invariants of coadjoint representation of n_{n,3} and its solvable extensions are deduced from this reduction. In several cases they have polynomial bases, i.e. the invariants of the respective solvable algebra can be chosen to be Casimir invariants in its enveloping algebra.
Comments: 19 pages
Tags: journal article
Related articles: Most relevant | Search more
arXiv:math-ph/0203022 (Published 2002-03-13)
On the classification of subalgebras of Cend_N and gc_N
arXiv:1001.1285 [math-ph] (Published 2010-01-08)
The Hamiltonian H=xp and classification of osp(1|2) representations
arXiv:math-ph/0304022 (Published 2003-04-14)
Classification of Two-dimensional Local Conformal Nets with c<1 and 2-cohomology Vanishing for Tensor Categories