arXiv:0907.4639 [math.GT]AbstractReferencesReviewsResources
Instanton Floer homology and the Alexander polynomial
P. B. Kronheimer, T. S. Mrowka
Published 2009-07-27, updated 2010-06-03Version 2
The instanton Floer homology of a knot in the three-sphere is a vector space with a canonical mod 2 grading. It carries a distinguished endomorphism of even degree,arising from the 2-dimensional homology class represented by a Seifert surface. The Floer homology decomposes as a direct sum of the generalized eigenspaces of this endomorphism. We show that the Euler characteristics of these generalized eigenspaces are the coefficients of the Alexander polynomial of the knot. Among other applications, we deduce that instanton homology detects fibered knots.
Comments: 25 pages, 6 figures. Revised version, correcting errors concerning mod 2 gradings in the skein sequence
Categories: math.GT
Related articles: Most relevant | Search more
A new property of the Alexander polynomial
arXiv:1303.5019 [math.GT] (Published 2013-03-20)
Colourings and the Alexander Polynomial
arXiv:1102.0701 [math.GT] (Published 2011-02-03)
On zeros of the Alexander polynomial of an alternating knot