arXiv Analytics

Sign in

arXiv:0907.2359 [cond-mat.dis-nn]AbstractReferencesReviewsResources

Statistical Mechanics of Logarithmic REM: Duality, Freezing and Extreme Value Statistics of $1/f$ Noises generated by Gaussian Free Fields

Yan V Fyodorov, Pierre Le Doussal, Alberto Rosso

Published 2009-07-14, updated 2009-10-19Version 2

We compute the distribution of the partition functions for a class of one-dimensional Random Energy Models (REM) with logarithmically correlated random potential, above and at the glass transition temperature. The random potential sequences represent various versions of the 1/f noise generated by sampling the two-dimensional Gaussian Free Field (2dGFF) along various planar curves. Our method extends the recent analysis of Fyodorov Bouchaud from the circular case to an interval and is based on an analytical continuation of the Selberg integral. In particular, we unveil a {\it duality relation} satisfied by the suitable generating function of free energy cumulants in the high-temperature phase. It reinforces the freezing scenario hypothesis for that generating function, from which we derive the distribution of extrema for the 2dGFF on the $[0,1]$ interval. We provide numerical checks of the circular and the interval case and discuss universality and various extensions. Relevance to the distribution of length of a segment in Liouville quantum gravity is noted.

Comments: 25 pages, 12 figures Published version. Misprint corrected, references and note added
Journal: J. Stat. Mech. (2009) P10005
Related articles: Most relevant | Search more
arXiv:0808.3217 [cond-mat.dis-nn] (Published 2008-08-23)
Driven particle in a random landscape: disorder correlator, avalanche distribution and extreme value statistics of records
arXiv:cond-mat/9707276 (Published 1997-07-27, updated 1998-07-07)
Statistical Mechanics of Vibration-Induced Compaction of Powders
arXiv:1303.4057 [cond-mat.dis-nn] (Published 2013-03-17, updated 2013-05-05)
Statistical Mechanics of Multiplex Ensembles: Entropy and Overlap