arXiv Analytics

Sign in

arXiv:0907.0771 [math.NT]AbstractReferencesReviewsResources

About the Diophantine Equation $x^{4}-q^{4}=py^{r}$

Diana Savin

Published 2009-07-06Version 1

In this paper, we prove a theorem about the integer solutions to the Diophantine equation $x^{4}-q^{4}=py^{r}$, extending previous work of K.Gy\H ory, and F.Luca and A.Togbe, and of the author.

Comments: 12 pages, Preliminary version
Categories: math.NT
Subjects: 11D41
Related articles: Most relevant | Search more
arXiv:1304.6413 [math.NT] (Published 2013-04-23, updated 2014-04-17)
On the Diophantine equation N X^2 + 2^L 3^M = Y^N
arXiv:1709.00400 [math.NT] (Published 2017-09-01)
On the Diophantine equation $(x+1)^{k}+(x+2)^{k}+...+(2x)^{k}=y^n$
arXiv:1003.3160 [math.NT] (Published 2010-03-16)
Note on the diophantine equation X^t+Y^t=BZ^t