arXiv:0904.4871 [math.PR]AbstractReferencesReviewsResources
Right inverses of Lévy processes
Published 2009-04-30, updated 2010-10-21Version 2
We call a right-continuous increasing process $K_x$ a partial right inverse (PRI) of a given L\'{e}vy process $X$ if $X_{K_x}=x$ for at least all $x$ in some random interval $[0,\zeta)$ of positive length. In this paper, we give a necessary and sufficient condition for the existence of a PRI in terms of the L\'{e}vy triplet.
Comments: Published in at http://dx.doi.org/10.1214/09-AOP515 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annals of Probability 2010, Vol. 38, No. 4, 1390-1400
DOI: 10.1214/09-AOP515
Categories: math.PR
Keywords: lévy processes, partial right inverse, random interval, sufficient condition, right-continuous increasing process
Tags: journal article
Related articles: Most relevant | Search more
On the Coupling Property of Lévy Processes
arXiv:math/0607282 [math.PR] (Published 2006-07-12)
Moment estimates for Lévy Processes
Lévy processes and Jacobi fields