arXiv:0904.1295 [math.DS]AbstractReferencesReviewsResources
Entire functions with Julia sets of positive measure
Magnus Aspenberg, Walter Bergweiler
Published 2009-04-08Version 1
Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy-Carleman-Ahlfors theorem implies that if the set of all z for which |f(z)|>R has N components for some R>0, then the order of f is at least N/2. More precisely, we have log log M(r,f) > (N/2) log r - O(1), where M(r,f) denotes the maximum modulus of f. We show that if f does not grow much faster than this, then the escaping set and the Julia set of f have positive Lebesgue measure. However, as soon as the order of f exceeds N/2, this need not be true. The proof requires a sharpened form of an estimate of Tsuji related to the Denjoy-Carleman-Ahlfors theorem.