arXiv:0903.4576 [math.CA]AbstractReferencesReviewsResources
Localized Morrey-Campanato Spaces on Metric Measure Spaces and Applications to Schrödinger Operators
Dachun Yang, Dongyong Yang, Yuan Zhou
Published 2009-03-26, updated 2009-11-03Version 2
Let ${\mathcal X}$ be a space of homogeneous type in the sense of Coifman and Weiss and ${\mathcal D}$ a collection of balls in $\cx$. The authors introduce the localized atomic Hardy space $H^{p, q}_{\mathcal D}({\mathcal X})$ with $p\in (0,1]$ and $q\in[1,\infty]\cap(p,\infty]$, the localized Morrey-Campanato space ${\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$ and the localized Morrey-Campanato-BLO space $\widetilde{\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$ with $\az\in{\mathbb R}$ and $p\in(0, \infty)$ and establish their basic properties including $H^{p, q}_{\mathcal D}({\mathcal X})=H^{p, \infty}_{\mathcal D}({\mathcal X})$ and several equivalent characterizations for ${\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$ and $\wz{\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$. Especially, the authors prove that when $p\in(0,1]$, the dual space of $H^{p, \infty}_{\mathcal D}({\mathcal X})$ is ${\mathcal E}^{1/p-1, 1}_{\mathcal D}({\mathcal X})$. Let $\rho$ be an admissible function modeled on the known auxiliary function determined by the Schr\"odinger operator. Denote the spaces ${\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$ and $\widetilde{\mathcal E}^{\alpha, p}_{\mathcal D}({\mathcal X})$, respectively, by ${\mathcal E}^{\alpha, p}_{\rho}({\mathcal X})$ and $\widetilde{\mathcal E}^{\alpha, p}_{\rho}({\mathcal X})$, when ${\mathcal D}$ is determined by $\rho$. The authors then obtain the boundedness from ${\mathcal E}^{\alpha, p}_{\rho}({\mathcal X})$ to $\widetilde{\mathcal E}^{\alpha, p}_{\rho}({\mathcal X})$ of the radial and the Poisson semigroup maximal functions and the Littlewood-Paley $g$-function which are defined via kernels modeled on the semigroup generated by the Schr\"odinger operator.