arXiv:0903.3214 [math.FA]AbstractReferencesReviewsResources
Kolmogorov compactness criterion in variable exponent Lebesgue spaces
Published 2009-03-18Version 1
The well-known Kolmogorov compactness criterion is extended to the case of variable exponent Lebesgue spaces $L^{p(\cdot)}({\Omega})$, where $\Omega$ is a bounded open set in $\mathbb R^n$ and $p(\cdot)$ satisfies some "standard" conditions. Our final result should be called Kolmogorov-Tulajkov Sudakov compactness criterion, since it includes the case $p_-=1$ and requires only the "uniform" condition.
Comments: 8 pages
Journal: Proc. A. Razmadze Math. Inst. 150 (2009), 105-113.
Categories: math.FA
Keywords: variable exponent lebesgue spaces, well-known kolmogorov compactness criterion, kolmogorov-tulajkov sudakov compactness criterion, bounded open set
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1703.02735 [math.FA] (Published 2017-03-08)
A note on Hardy-type inequalities in variable exponent Lebesgue spaces
arXiv:1007.1351 [math.FA] (Published 2010-07-08)
Operators of Harmonic Analysis in Variable Exponent Lebesgue Spaces. Two-Weight Estimates
arXiv:1312.7232 [math.FA] (Published 2013-12-27)
Maximal multiplier operators in $L^{p(\cdot)}(\mathbb{R}^{n})$ spaces