arXiv:0903.0623 [math.PR]AbstractReferencesReviewsResources
Some Diffusion Processes Associated With Two Parameter Poisson-Dirichlet Distribution and Dirichlet Process
Published 2009-03-03, updated 2009-03-22Version 2
The two parameter Poisson-Dirichlet distribution $PD(\alpha,\theta)$ is the distribution of an infinite dimensional random discrete probability. It is a generalization of Kingman's Poisson-Dirichlet distribution. The two parameter Dirichlet process $\Pi_{\alpha,\theta,\nu_0}$ is the law of a pure atomic random measure with masses following the two parameter Poisson-Dirichlet distribution. In this article we focus on the construction and the properties of the infinite dimensional symmetric diffusion processes with respective symmetric measures $PD(\alpha,\theta)$ and $\Pi_{\alpha,\theta,\nu_0}$. The methods used come from the theory of Dirichlet forms.
Comments: 24 pages
Subjects: 60F10
Related articles: Most relevant | Search more
arXiv:math/0410151 [math.PR] (Published 2004-10-06)
Means of a Dirichlet process and multiple hypergeometric functions
arXiv:1112.4557 [math.PR] (Published 2011-12-20)
Gamma-Dirichlet Structure and Two Classes of Measure-valued Processes
arXiv:2409.18621 [math.PR] (Published 2024-09-27)
A New Bound on the Cumulant Generating Function of Dirichlet Processes