arXiv:0902.4867 [math.AT]AbstractReferencesReviewsResources
Completed representation ring spectra of nilpotent groups
Published 2009-02-27Version 1
In this paper, we examine the `derived completion' of the representation ring of a pro-p group G_p^ with respect to an augmentation ideal. This completion is no longer a ring: it is a spectrum with the structure of a module spectrum over the Eilenberg-MacLane spectrum HZ, and can have higher homotopy information. In order to explain the origin of some of these higher homotopy classes, we define a deformation representation ring functor R[-] from groups to ring spectra, and show that the map R[G_p^] --> R[G] becomes an equivalence after completion when G is finitely generated nilpotent. As an application, we compute the derived completion of the representation ring of the simplest nontrivial case, the p-adic Heisenberg group.