arXiv:0902.4238 [astro-ph.HE]AbstractReferencesReviewsResources
X-ray Timing of Stellar Mass Black Holes
John A. Tomsick, Ronald A. Remillard, Jeroen Homan, Philip Kaaret, Didier Barret, Jeremy Schnittman
Published 2009-02-24Version 1
X-ray timing observations of accreting stellar mass black holes have shown that they can produce signals with such short time scales that we must be probing very close to the innermost stable circular orbit that is predicted by the theory of General Relativity (GR). These signals are quasi-periodic oscillations (QPOs), and both the high-frequency variety (HFQPOs, which have frequencies in the 40-450 Hz range) as well as the 0.1-10 Hz low-frequency type have the potential to provide tests of GR in the strong field limit. An important step on the path to GR tests is to constrain the physical black hole properties, and the straightforward frequency measurements that are possible with X-ray timing may provide one of the cleanest measurements of black hole spins. While current X-ray satellites have uncovered these phenomenona, the HFQPOs are weak signals, and future X-ray timing missions with larger effective area are required for testing the candidate theoretical QPO mechanisms. Another main goal in the study of accreting black holes is to understand the production of relativistic jets. Here, we have also made progress during the past decade by finding clear connections between the radio emission that traces the strength of the jet and the properties of the X-ray emission. With new radio capabilities just coming on-line, continuing detailed X-ray studies of accreting black holes is crucial for continuing to make progress.