arXiv Analytics

Sign in

arXiv:0901.1583 [math.LO]AbstractReferencesReviewsResources

Randomizations of models as metric structures

Itaï Ben Yaacov, H. Jerome Keisler

Published 2009-01-12, updated 2009-09-23Version 2

The notion of a randomization of a first order structure was introduced by Keisler in the paper Randomizing a Model, Advances in Math. 1999. The idea was to form a new structure whose elements are random elements of the original first order structure. In this paper we treat randomizations as continuous structures in the sense of Ben Yaacov and Usvyatsov. In this setting, the earlier results show that the randomization of a complete first order theory is a complete theory in continuous logic that admits elimination of quantifiers and has a natural set of axioms. We show that the randomization operation preserves the properties of being omega-categorical, omega-stable, and stable.

Related articles: Most relevant | Search more
arXiv:1110.4919 [math.LO] (Published 2011-10-21, updated 2012-04-05)
Sheaves of metric structures
arXiv:2302.01220 [math.LO] (Published 2023-02-02)
SB-property on metric structures
arXiv:0810.0734 [math.LO] (Published 2008-10-03, updated 2019-08-18)
Unstable classes of metric structures