arXiv Analytics

Sign in

arXiv:0901.1134 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Formation and Evolution of Single Molecule Junctions

M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, L. Venkataraman

Published 2009-01-08Version 1

We analyze the formation and evolution statistics of single molecule junctions bonded to gold electrodes using amine, methyl sulfide and dimethyl phosphine link groups by measuring conductance as a function of junction elongation. For each link, maximum elongation and formation probability increase with molecular length, strongly suggesting that processes other than just metal-molecule bond breakage play a key role in junction evolution under stress. Density functional theory calculations of adiabatic trajectories show sequences of atomic-scale changes in junction structure, including shifts in attachment point, that account for the long conductance plateau lengths observed.

Related articles: Most relevant | Search more
arXiv:1211.4310 [cond-mat.mes-hall] (Published 2012-11-19)
Graphyne- and Graphdiyne-based Nanoribbons: Density Functional Theory Calculations of Electronic Structures
arXiv:1712.04249 [cond-mat.mes-hall] (Published 2017-12-12)
Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations
arXiv:1112.2736 [cond-mat.mes-hall] (Published 2011-12-12)
Theoretical study of $α$-U/W(110) thin films from density functional theory calculations: Structural, magnetic and electronic properties