arXiv:0901.1134 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Formation and Evolution of Single Molecule Junctions
M. Kamenetska, M. Koentopp, A. C. Whalley, Y. S. Park, M. L. Steigerwald, C. Nuckolls, M. S. Hybertsen, L. Venkataraman
Published 2009-01-08Version 1
We analyze the formation and evolution statistics of single molecule junctions bonded to gold electrodes using amine, methyl sulfide and dimethyl phosphine link groups by measuring conductance as a function of junction elongation. For each link, maximum elongation and formation probability increase with molecular length, strongly suggesting that processes other than just metal-molecule bond breakage play a key role in junction evolution under stress. Density functional theory calculations of adiabatic trajectories show sequences of atomic-scale changes in junction structure, including shifts in attachment point, that account for the long conductance plateau lengths observed.