arXiv Analytics

Sign in

arXiv:0812.5015 [math.FA]AbstractReferencesReviewsResources

Stability of cubic and quartic functional equations in non-Archimedean spaces

M. Eshaghi Gordji, M. Bavand Savadkouhi

Published 2008-12-30Version 1

We prove generalized Hyres-Ulam-Rassias stability of the cubic functional equation $f(kx+y)+f(kx-y)=k[f(x+y)+f(x-y)]+2(k^3-k)f(x)$ for all $k\in \Bbb N$ and the quartic functional equation $f(kx+y)+f(kx-y)=k^2[f(x+y)+f(x-y)]+2k^2(k^2-1)f(x)-2(k^2-1)f(y)$ for all $k\in \Bbb N$ in non-Archimedean normed spaces.

Related articles: Most relevant | Search more
arXiv:0812.2939 [math.FA] (Published 2008-12-15, updated 2008-12-30)
Stability of a mixed type quadratic, cubic and quartic functional equation
arXiv:0812.5017 [math.FA] (Published 2008-12-30)
On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces
arXiv:0909.5692 [math.FA] (Published 2009-09-30, updated 2009-10-08)
Stability of generalized mixed type additive-quadratic-cubic functional equation in non-Archimedean spaces