arXiv Analytics

Sign in

arXiv:0812.2300 [math.CO]AbstractReferencesReviewsResources

A characterization of well-founded algebraic lattices

Ilham Chakir, Maurice Pouzet

Published 2008-12-12Version 1

We characterize well-founded algebraic lattices by means of forbidden subsemilattices of the join-semilattice made of their compact elements. More specifically, we show that an algebraic lattice $L$ is well-founded if and only if $K(L)$, the join-semilattice of compact elements of $L$, is well-founded and contains neither $[\omega]^{<\omega}$, nor $\underline\Omega(\omega^*)$ as a join-subsemilattice. As an immediate corollary, we get that an algebraic modular lattice $L$ is well-founded if and only if $K(L)$ is well-founded and contains no infinite independent set. If $K(L)$ is a join-subsemilattice of $I_{<\omega}(Q)$, the set of finitely generated initial segments of a well-founded poset $Q$, then $L$ is well-founded if and only if $K(L)$ is well-quasi-ordered.

Comments: 19 pages, 2 pictures, submitted
Categories: math.CO, math.LO
Subjects: 06A12, 06B35
Related articles: Most relevant | Search more
arXiv:1507.06800 [math.CO] (Published 2015-07-24)
The Characterization of planar, 4-connected, K_{2,5}-minor-free graphs
arXiv:math/0212139 [math.CO] (Published 2002-12-10)
Characterization of SDP Designs That Yield Certain Spin Models
arXiv:1702.05873 [math.CO] (Published 2017-02-20)
Characterization of 1-Tough Graphs using Factors