arXiv:0811.4221 [math.AP]AbstractReferencesReviewsResources
Wellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces
Chengchun Hao, Ling Hsiao, Baoxiang Wang
Published 2008-11-26Version 1
We study the wellposedness of Cauchy problem for the fourth order nonlinear Schr\"odinger equations i\partial_t u=-\eps\Delta u+\Delta^2 u+P((\partial_x^\alpha u)_{\abs{\alpha}\ls 2}, (\partial_x^\alpha \bar{u})_{\abs{\alpha}\ls 2}),\quad t\in \Real, x\in\Real^n, where $\eps\in\{-1,0,1\}$, $n\gs 2$ denotes the spatial dimension and $P(\cdot)$ is a polynomial excluding constant and linear terms.
Comments: 28 pages
Journal: J. Math. Anal. Appl., 328(1), 58-83, 2007
Categories: math.AP
Keywords: fourth order nonlinear schrödinger equations, cauchy problem, multi-dimensional spaces, wellposedness, spatial dimension
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1103.1292 [math.AP] (Published 2011-03-07)
The Cauchy problem for the DMKP equation
The Cauchy problem for a Schroedinger - Korteweg - de Vries system with rough data
Continuous Dependence of Cauchy Problem For Nonlinear Schrödinger Equation in $H^{s}$