arXiv Analytics

Sign in

arXiv:0811.4221 [math.AP]AbstractReferencesReviewsResources

Wellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces

Chengchun Hao, Ling Hsiao, Baoxiang Wang

Published 2008-11-26Version 1

We study the wellposedness of Cauchy problem for the fourth order nonlinear Schr\"odinger equations i\partial_t u=-\eps\Delta u+\Delta^2 u+P((\partial_x^\alpha u)_{\abs{\alpha}\ls 2}, (\partial_x^\alpha \bar{u})_{\abs{\alpha}\ls 2}),\quad t\in \Real, x\in\Real^n, where $\eps\in\{-1,0,1\}$, $n\gs 2$ denotes the spatial dimension and $P(\cdot)$ is a polynomial excluding constant and linear terms.

Comments: 28 pages
Journal: J. Math. Anal. Appl., 328(1), 58-83, 2007
Categories: math.AP
Subjects: 35Q55, 35G25, 35A07
Related articles: Most relevant | Search more
arXiv:1103.1292 [math.AP] (Published 2011-03-07)
The Cauchy problem for the DMKP equation
arXiv:math/0501408 [math.AP] (Published 2005-01-24, updated 2005-10-24)
The Cauchy problem for a Schroedinger - Korteweg - de Vries system with rough data
arXiv:1009.2005 [math.AP] (Published 2010-09-10, updated 2012-02-10)
Continuous Dependence of Cauchy Problem For Nonlinear Schrödinger Equation in $H^{s}$