arXiv Analytics

Sign in

arXiv:0811.0622 [math.PR]AbstractReferencesReviewsResources

Closeness of convolutions of probability measures

Bero Roos

Published 2008-11-04Version 1

We derive new explicit bounds for the total variation distance between two convolution products of $n$ probability distributions, one of which having identical convolution factors. Approximations by finite signed measures of arbitrary order are considered as well. We are interested in bounds with magic factors, i.e. roughly speaking $n$ also appears in the denominator. Special emphasis is given to the approximation by the $n$-fold convolution of the arithmetic mean of the distributions under consideration. As an application, we consider the multinomial approximation of the generalized multinomial distribution. It turns out that here the order of some bounds given in Roos (2001) and Loh (1992) can significantly be improved. In particular, it follows that a dimension factor can be dropped. Moreover, better accuracy is achieved in the context of symmetric distributions with finite support. In the course of proof, we use a basic Banach algebra technique for measures on a measurable Abelian group. Though this method was already used by Le Cam (1960), our central arguments seem to be new. We also derive new smoothness bounds for convolutions of probability distributions, which might be of independent interest.

Related articles: Most relevant | Search more
arXiv:1508.00464 [math.PR] (Published 2015-07-30)
Approximation of symmetrizations by Markov processes
arXiv:0912.2044 [math.PR] (Published 2009-12-10, updated 2011-02-15)
Approximation of projections of random vectors
arXiv:1611.00498 [math.PR] (Published 2016-11-02)
A coupled KPZ equation, its two types of approximations and existence of global solutions