arXiv Analytics

Sign in

arXiv:0810.3896 [math.AT]AbstractReferencesReviewsResources

On the homotopy classification of maps

Samson Saneblidze

Published 2008-10-21, updated 2009-06-11Version 3

We establish certain conditions which imply that a map $f:X\to Y$ of topological spaces is null homotopic when the induced integral cohomology homomorphism is trivial; one of them is: $H^*(X)$ and $\pi_*(Y)$ have no torsion and $H^*(Y)$ is polynomial.

Comments: 10 pages, 1 figure, fixed typos, added references
Categories: math.AT
Subjects: 55S37, 55R35, 55S05, 55P35
Related articles: Most relevant | Search more
arXiv:1503.04840 [math.AT] (Published 2015-03-16)
A looping-delooping adjunction for topological spaces
arXiv:0802.4357 [math.AT] (Published 2008-02-29, updated 2008-06-25)
Exact sequences of fibrations of crossed complexes, homotopy classification of maps, and nonabelian extensions of groups
arXiv:math/0605200 [math.AT] (Published 2006-05-08)
Homotopy classification of gerbes