arXiv:0810.2982 [math.PR]AbstractReferencesReviewsResources
On the Limiting Shape of Markovian Random Young Tableaux
Christian Houdré, Trevis J. Litherland
Published 2008-10-16Version 1
Let $(X_n)_{n \ge 0}$ be an irreducible, aperiodic, homogeneous Markov chain, with state space an ordered finite alphabet of size $m$. Using combinatorial constructions and weak invariance principles, we obtain the limiting shape of the associated Young tableau as a multidimensional Brownian functional. Since the length of the top row of the Young tableau is also the length of the longest (weakly) increasing subsequence of $(X_k)_{1\le k \le n}$, the corresponding limiting law follows. We relate our results to a conjecture of Kuperberg by showing that, under a cyclic condition, a spectral characterization of the Markov transition matrix delineates precisely when the limiting shape is the spectrum of the traceless GUE. For $m=3$, all cyclic Markov chains have such a limiting shape, a fact previously known for $m=2$. However, this is no longer true for $m \ge 4$.