arXiv Analytics

Sign in

arXiv:0810.2060 [math.GR]AbstractReferencesReviewsResources

Abstract commensurators of profinite groups

Yiftach Barnea, Mikhail Ershov, Thomas Weigel

Published 2008-10-11, updated 2011-07-21Version 2

In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group $G$ is a group $Comm(G)$ which depends only on the commensurability class of $G$. We study various properties of $Comm(G)$; in particular, we find two natural ways to turn it into a topological group. We also use $Comm(G)$ to study topological groups which contain $G$ as an open subgroup (all such groups are totally disconnected and locally compact). For instance, we construct a topologically simple group which contains the pro-2 completion of the Grigorchuk group as an open subgroup. On the other hand, we show that some profinite groups cannot be embedded as open subgroups of compactly generated topologically simple groups. Several celebrated rigidity theorems, like Pink's analogue of Mostow's strong rigidity theorem for simple algebraic groups defined over local fields and the Neukirch-Uchida theorem, can be reformulated as structure theorems for the commensurators of certain profinite groups.

Comments: 37 pages, final version
Journal: Trans. Amer. Math. Soc. 363 (2011), no. 10, 5381--5417
Categories: math.GR
Subjects: 20E18, 22D05, 22D45
Related articles: Most relevant | Search more
arXiv:2107.00491 [math.GR] (Published 2021-07-01)
Profinite groups with restricted centralizers of $π$-elements
arXiv:2012.13886 [math.GR] (Published 2020-12-27)
Profinite groups with many elements of bounded order
arXiv:1405.5352 [math.GR] (Published 2014-05-21)
Procyclic coverings of commutators in profinite groups