arXiv Analytics

Sign in

arXiv:0810.0748 [math.OC]AbstractReferencesReviewsResources

Observer design for invariant systems with homogeneous observations

C. Lageman, J. Trumpf, R. Mahony

Published 2008-10-04Version 1

This paper considers the design of nonlinear observers for invariant systems posed on finite-dimensional connected Lie groups with measurements generated by a transitive group action on an associated homogeneous space. We consider the case where the group action has the opposite invariance to the system invariance and show that the group kinematics project to a minimal realisation of the systems observable dynamics on the homogeneous output space. The observer design problem is approached by designing an observer for the projected output dynamics and then lifting to the Lie-group. A structural decomposition theorem for observers of the projected system is provided along with characterisation of the invariance properties of the associated observer error dynamics. We propose an observer design based on a gradient-like construction that leads to strong (almost) global convergence properties of canonical error dynamics on the homogeneous output space. The observer dynamics are lifted to the group in a natural manner and the resulting gradient-like error dynamics of the observer on the Lie-group converge almost globally to the unobservable subgroup of the system, the stabiliser of the group action.

Related articles: Most relevant | Search more
arXiv:2401.14158 [math.OC] (Published 2024-01-25)
A robust consensus + innovations-based distributed parameter estimator
arXiv:1910.05669 [math.OC] (Published 2019-10-13)
Model Predictive Tracking Control for Invariant Systems on Matrix Lie Groups via Stable Embedding into Euclidean Spaces
arXiv:1912.12580 [math.OC] (Published 2019-12-29)
Invariant extended Kalman filter on matrix Lie groups