arXiv Analytics

Sign in

arXiv:0810.0538 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Valley splitting in a Si/SiGe quantum point contact

L. M. McGuire, Mark Friesen, K. A. Slinker, S. N. Coppersmith, M. A. Eriksson

Published 2008-10-02, updated 2010-03-29Version 2

We present the theory and measurement of valley splitting in a quantum point contact (QPC) in a modulation doped Si/SiGe heterostructure. Our measurements are performed on a submicron Schottky-gated device. An effective mass theory is developed for a QPC formed in a quantum well, grown on a miscut substrate. Both theory and experiments include a perpendicular magnetic field. Our results indicate that both QPC and magnetic confinement can enhance the valley splitting by reducing the spatial extent of the electronic wavefunction. Consequently, the valley splitting can be much larger than the spin splitting for small magnetic fields. We also observe different valley splittings for different transverse modes in the QPC, supporting the notion that when steps are present at the quantum well interface, the spatial extent of the wavefunction plays a dominant role in determining the valley splitting.

Related articles: Most relevant | Search more
arXiv:0707.2644 [cond-mat.mes-hall] (Published 2007-07-18)
Oscillation of spin polarization in a two-dimensional hole gas under a perpendicular magnetic field
arXiv:1008.0703 [cond-mat.mes-hall] (Published 2010-08-04, updated 2010-10-08)
Spin edge helices in a perpendicular magnetic field
arXiv:1007.4051 [cond-mat.mes-hall] (Published 2010-07-23)
Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic field