arXiv Analytics

Sign in

arXiv:0810.0304 [math.AG]AbstractReferencesReviewsResources

Stability of holonomicity over quasi-projective varieties

Daniel Caro

Published 2008-10-01, updated 2009-06-24Version 3

Let $\V$ be a mixed characteristic complete discrete valuation ring with perfect residue field $k$. We solve Berthelot's conjectures on the stability of the holonomicity over smooth projective formal $\V$-schemes. Then we build a category of complexes of arithmetic $\D$-modules over quasi-projective $k$-varieties with bounded, $F$-holonomic cohomology. We get its stability under Grothendieck's six operations.

Related articles: Most relevant | Search more
arXiv:math/0509448 [math.AG] (Published 2005-09-20, updated 2009-01-26)
Sur la compatibilité à Frobenius de l'isomorphisme de dualité relative
arXiv:math/0603587 [math.AG] (Published 2006-03-24, updated 2007-07-30)
Overconvergent log isocrystals and holonomicity
arXiv:1103.1579 [math.AG] (Published 2011-03-08, updated 2014-11-28)
Overcoherence implies holonomicity