arXiv:0809.2969 [cond-mat.stat-mech]AbstractReferencesReviewsResources
Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems
Published 2008-09-17Version 1
We have developed an efficient Monte Carlo algorithm, which accelerates slow Monte Carlo dynamics in quasi-one-dimensional Ising spin systems. The loop algorithm of the quantum Monte Carlo method is applied to the classical spin models with highly anisotropic exchange interactions. Both correlation time and real CPU time are reduced drastically. The algorithm is demonstrated in the layered triangular-lattice antiferromagnetic Ising model. We have obtained the relation between the transition temperature and the exchange interaction parameters, which modifies the result of the chain-mean-field theory.
Comments: 4 pages, 3 figures
Categories: cond-mat.stat-mech, cond-mat.mtrl-sci
Keywords: efficient monte carlo algorithm, quasi-one-dimensional ising spin systems, triangular-lattice antiferromagnetic ising model, accelerates slow monte carlo dynamics
Tags: journal article
Related articles: Most relevant | Search more
Efficient Monte Carlo algorithm and high-precision results for percolation
arXiv:cond-mat/0112472 (Published 2001-12-27)
The boundary between long-range and short-range critical behavior
arXiv:1704.08864 [cond-mat.stat-mech] (Published 2017-04-28)
Models and algorithms for the next generation of glass transition studies