arXiv Analytics

Sign in

arXiv:0808.1157 [math.CO]AbstractReferencesReviewsResources

Enumeration of $(k,2)$-noncrossing partitions

Toufik Mansour, Simone Severini

Published 2008-08-08Version 1

A set partition is said to be $(k,d)$-noncrossing if it avoids the pattern $12... k12... d$. We find an explicit formula for the ordinary generating function of the number of $(k,d)$-noncrossing partitions of $\{1,2,...,n\}$ when $d=1,2$.

Comments: 9 pages, 1 table
Journal: Discrete Mathematics 308:20 (2008) 4570-4577
Categories: math.CO
Subjects: 05A05, 05A15
Related articles: Most relevant | Search more
arXiv:1203.6792 [math.CO] (Published 2012-03-30)
Enumeration of edges in some lattices of paths
arXiv:1106.5480 [math.CO] (Published 2011-06-27, updated 2013-03-21)
Enumeration of Graded (3+1)-Avoiding Posets
arXiv:0710.1370 [math.CO] (Published 2007-10-06, updated 2011-05-05)
A problem of enumeration of two-color bracelets with several variations