arXiv Analytics

Sign in

arXiv:0807.1747 [math.DS]AbstractReferencesReviewsResources

The n-body problem in spaces of constant curvature

Florin Diacu, Ernesto Perez-Chavela, Manuele Santoprete

Published 2008-07-10, updated 2008-08-22Version 6

We generalize the Newtonian n-body problem to spaces of curvature k=constant, and study the motion in the 2-dimensional case. For k>0, the equations of motion encounter non-collision singularities, which occur when two bodies are antipodal. This phenomenon leads, on one hand, to hybrid solution singularities for as few as 3 bodies, whose corresponding orbits end up in a collision-antipodal configuration in finite time; on the other hand, it produces non-singularity collisions, characterized by finite velocities and forces at the collision instant. We also point out the existence of several classes of relative equilibria, including the hyperbolic rotations for k<0. In the end, we prove Saari's conjecture when the bodies are on a geodesic that rotates elliptically or hyperbolically. We also emphasize that fixed points are specific to the case k>0, hyperbolic relative equilibria to k<0, and Lagrangian orbits of arbitrary masses to k=0--results that provide new criteria towards understanding the large-scale geometry of the physical space.

Related articles: Most relevant | Search more
arXiv:1301.7034 [math.DS] (Published 2013-01-29)
On the free time minimizers of the Newtonian N-body problem
arXiv:2008.08762 [math.DS] (Published 2020-08-20)
Existence of partially hyperbolic motions in the Newtonian N-body problem
arXiv:1108.0987 [math.DS] (Published 2011-08-04, updated 2011-10-28)
Three-Period Orbits in Billiards on the Surfaces of Constant Curvature