arXiv:0806.3408 [quant-ph]AbstractReferencesReviewsResources
The Attractor and the Quantum States
Published 2008-06-20Version 1
The dissipative dynamics anticipated in the proof of 't Hooft's existence theorem -- "For any quantum system there exists at least one deterministic model that reproduces all its dynamics after prequantization" -- is constructed here explicitly. We propose a generalization of Liouville's classical phase space equation, incorporating dissipation and diffusion, and demonstrate that it describes the emergence of quantum states and their dynamics in the Schroedinger picture. Asymptotically, there is a stable ground state and two decoupled sets of degrees of freedom, which transform into each other under the energy-parity symmetry of Kaplan and Sundrum. They recover the familiar Hilbert space and its dual. Expectations of observables are shown to agree with the Born rule, which is not imposed a priori. This attractor mechanism is applicable in the presence of interactions, to few-body or field theories in particular.