arXiv Analytics

Sign in

arXiv:0805.3394 [math.PR]AbstractReferencesReviewsResources

Estimation in models driven by fractional Brownian motion

Corinne Berzin, José R. León

Published 2008-05-22Version 1

Let $\{b_H(t),t\in\mathbb{R}\}$ be the fractional Brownian motion with parameter $0<H<1$. When $1/2<H$, we consider diffusion equations of the type \[X(t)=c+\int_0^t\sigma\bigl(X(u)\bigr)\mathrm {d}b_H(u)+\int _0^t\mu\bigl(X(u)\bigr)\mathrm {d}u.\] In different particular models where $\sigma(x)=\sigma$ or $\sigma(x)=\sigma x$ and $\mu(x)=\mu$ or $\mu(x)=\mu x$, we propose a central limit theorem for estimators of $H$ and of $\sigma$ based on regression methods. Then we give tests of the hypothesis on $\sigma$ for these models. We also consider functional estimation on $\sigma(\cdot)$ in the above more general models based in the asymptotic behavior of functionals of the 2nd-order increments of the fBm.

Comments: Published in at http://dx.doi.org/10.1214/07-AIHP105 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques 2008, Vol. 44, No. 2, 191-213
Categories: math.PR
Related articles: Most relevant | Search more
arXiv:0802.3307 [math.PR] (Published 2008-02-22, updated 2009-12-14)
Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case $H=1/4$
arXiv:0705.0570 [math.PR] (Published 2007-05-04, updated 2009-01-19)
Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion
arXiv:1308.0521 [math.PR] (Published 2013-08-02, updated 2016-02-15)
Asymptotic behavior of the generalized St. Petersburg sum conditioned on its maximum