arXiv:0805.0563 [math.NT]AbstractReferencesReviewsResources
New congruences for central binomial coefficients
Published 2008-05-05, updated 2010-04-01Version 4
Let p be a prime and let a be a positive integer. In this paper we determine $\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k$ and $\sum_{k=1}^{p-1}\binom{2k}{k+d}/(km^{k-1})$ modulo $p$ for all d=0,...,p^a, where m is any integer not divisible by p. For example, we show that if $p\not=2,5$ then $$\sum_{k=1}^{p-1}(-1)^k\frac{\binom{2k}k}k=-5\frac{F_{p-(\frac p5)}}p (mod p),$$ where F_n is the n-th Fibonacci number and (-) is the Jacobi symbol. We also prove that if p>3 then $$\sum_{k=1}^{p-1}\frac{\binom{2k}k}k={8/9} p^2B_{p-3} (mod p^3),$$ where B_n denotes the n-th Bernoulli number.
Journal: Adv. in Appl. Math. 45(2010), no.1, 125-148.
Keywords: central binomial coefficients, congruences, n-th bernoulli number, n-th fibonacci number, jacobi symbol
Tags: journal article
Related articles: Most relevant | Search more
On congruences related to central binomial coefficients
arXiv:2210.17255 [math.NT] (Published 2022-10-31)
Congruences involving cubes of central binomial coefficients
On some new congruences for binomial coefficients