arXiv:0804.1945 [math.FA]AbstractReferencesReviewsResources
Algebras of Almost Periodic Functions with Bohr-Fourier Spectrum in a Semigroup: Hermite Property and its Applications
Published 2008-04-11Version 1
It is proved that the unital Banach algebra of almost periodic functions of several variables with Bohr-Fourier spectrum in a given additive semigroup is an Hermite ring. The same property holds for the Wiener algebra of functions that in addition have absolutely convergent Bohr-Fourier series. As applications of the Hermite property of these algebras, we study factorizations of Wiener--Hopf type of rectangular matrix functions and the Toeplitz corona problem in the context of almost periodic functions of several variables.
Comments: 18 pages
Categories: math.FA
Related articles: Most relevant | Search more
On ideals of polynomials and their applications
arXiv:1005.5140 [math.FA] (Published 2010-05-27)
A T(1)-Theorem in relation to a semigroup of operators and applications to new paraproducts
arXiv:1303.4345 [math.FA] (Published 2013-03-18)
A Sufficient Condition for the Existence of a Principal Eigenvalue for Nonlocal Diffusion Equations with Applications