arXiv Analytics

Sign in

arXiv:0803.3805 [math.GR]AbstractReferencesReviewsResources

Largeness of LERF and 1-relator groups

Jack Button

Published 2008-03-26Version 1

We consider largeness of groups given by a presentation of deficiency 1, where the group is respectively free-by-cyclic, LERF or 1-relator. We give the first examples of (finitely generated free)-by-(infinite cyclic) word hyperbolic groups which are large, show that a LERF deficiency 1 group with first Betti number at least 2 is large or the integers times the integers, and show that 2-generator 1-relator groups where the relator has height 1 obey the dichotomy that either the group is large or all its finite images are metacyclic.

Comments: 33 pages; contains a problem list on pages 22 to 28
Categories: math.GR
Subjects: 20F05
Related articles: Most relevant | Search more
arXiv:1811.09220 [math.GR] (Published 2018-11-22)
Subgroups of word hyperbolic groups in dimension $2$
arXiv:1908.03014 [math.GR] (Published 2019-08-08)
First Betti numbers of orbits of Morse functions on surfaces
arXiv:2309.16252 [math.GR] (Published 2023-09-28)
On the finite images of finitely generated perfect groups