arXiv Analytics

Sign in

arXiv:0803.3767 [math.FA]AbstractReferencesReviewsResources

Asymptotics of Toeplitz Matrices with Symbols in Some Generalized Krein Algebras

Alexei Yu. Karlovich

Published 2008-03-26Version 1

Let $\alpha,\beta\in(0,1)$ and \[ K^{\alpha,\beta}:=\left\{a\in L^\infty(\T): \sum_{k=1}^\infty |\hat{a}(-k)|^2 k^{2\alpha}<\infty, \sum_{k=1}^\infty |\hat{a}(k)|^2 k^{2\beta}<\infty \right\}. \] Mark Krein proved in 1966 that $K^{1/2,1/2}$ forms a Banach algebra. He also observed that this algebra is important in the asymptotic theory of finite Toeplitz matrices. Ten years later, Harold Widom extended earlier results of Gabor Szeg\H{o} for scalar symbols and established the asymptotic trace formula \[ \operatorname{trace}f(T_n(a))=(n+1)G_f(a)+E_f(a)+o(1) \quad\text{as}\ n\to\infty \] for finite Toeplitz matrices $T_n(a)$ with matrix symbols $a\in K^{1/2,1/2}_{N\times N}$. We show that if $\alpha+\beta\ge 1$ and $a\in K^{\alpha,\beta}_{N\times N}$, then the Szeg\H{o}-Widom asymptotic trace formula holds with $o(1)$ replaced by $o(n^{1-\alpha-\beta})$.

Related articles: Most relevant | Search more
arXiv:math/0612487 [math.FA] (Published 2006-12-18)
Generalized Krein algebras and asymptotics of Toeplitz determinants
arXiv:math/9809088 [math.FA] (Published 1998-09-16)
Asymptotic formulas for determinants of a sum of finite Toeplitz and Hankel matrices
arXiv:math/0606016 [math.FA] (Published 2006-06-01, updated 2006-12-18)
Norms of Toeplitz Matrices with Fisher-Hartwig Symbols