arXiv:0803.2782 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Interaction-induced beats of Friedel oscillations in quantum wires
Published 2008-03-19Version 1
We analyze the spectrum of electron density oscillations in an interacting one-dimensional electron system with an impurity. The system's inhomogeneity is characterized by different values of Fermi wave vectors $k_F=k_{L/R}$ on left/right side of the scatterer, leading to a Landauer dipole formation. We demonstrate, that while in the noninteracting system the Friedel oscillations possess only one periodicity related to the local $k_F$, say $k_L$ on the left side, the interplay of the interactions and the Landauer dipole generates an additional peak in the spectrum of density oscillations at the counterpart $k_R$. Being only present in correlated systems, the position and shape of this spectral feature, which in coordinate space is observable as a beating pattern in the Friedel oscillations, reveals many important details about the nature of interactions. Thus it has a potential to become an investigation tool in condensed matter physics.