arXiv Analytics

Sign in

arXiv:0803.1175 [math.GN]AbstractReferencesReviewsResources

Pre-Hausdorff Spaces

Jay Stine, M. V. Mielke

Published 2008-03-07Version 1

This paper introduces three separation conditions for topological spaces, called T_{0,1}, T_{0,2} ("pre-Hausdorff"), and T_{1,2}. These conditions generalize the classical T_(1) and T_(2) separation axioms, and they have advantages over them topologically which we discuss. We establish several different characterizations of pre-Hausdorff spaces, and a characterization of Hausdorff spaces in terms of pre-Hausdorff. We also discuss some classical Theorems of general topology which can or cannot be generalized by replacing the Hausdorff condition by pre-Hausdorff.

Related articles: Most relevant | Search more
arXiv:1709.09048 [math.GN] (Published 2017-09-25)
Semi Lamda*-Closed Sets and New Separation Axioms in Alexandroff Spaces
arXiv:2304.08462 [math.GN] (Published 2023-04-17)
A Formula for Derived Sets in General Topology
arXiv:1810.05390 [math.GN] (Published 2018-10-12)
New separation axioms in generalized bitopological spaces