arXiv Analytics

Sign in

arXiv:0802.2636 [math.ST]AbstractReferencesReviewsResources

A limited in bandwidth uniformity for the functional limit law of the increments of the empirical process

Davit Varron

Published 2008-02-19, updated 2008-11-13Version 2

Consider the following local empirical process indexed by $K\in \mathcal{G}$, for fixed $h>0$ and $z\in \mathbb{R}^d$: $$G_n(K,h,z):=\sum_{i=1}^n K \Bigl(\frac{Z_i-z}{h^{1/d}}\Big) - \mathbbE \Bigl(K \Bigl(\frac{Z_i-z}{h^{1/d}}\Big)\Big),$$ where the $Z_i$ are i.i.d. on $\mathbb{R}^d$. We provide an extension of a result of Mason (2004). Namely, under mild conditions on $\mathcal{G}$ and on the law of $Z_1$, we establish a uniform functional limit law for the collections of processes $\bigl\{G_n(\cdot,h_n,z), z\in H, h\in [h_n,\mathfrak{h}_n]\big\}$, where $H\subset \mathbb{R}^d$ is a compact set with nonempty interior and where $h_n$ and $\mathfrak{h}_n$ satisfy the Cs\"{o}rg\H{o}-R\'{e}v\'{e}sz-Stute conditions.

Comments: Published in at http://dx.doi.org/10.1214/08-EJS193 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org)
Journal: Electronic Journal of Statistics 2008, Vol. 2, 1043-1064
Categories: math.ST, stat.TH
Subjects: 60F15, 60F17, 62G07
Related articles: Most relevant | Search more
arXiv:math/0612260 [math.ST] (Published 2006-12-10, updated 2007-11-13)
Functional limit laws for the increments of the quantile process; with applications
arXiv:1709.00747 [math.ST] (Published 2017-09-03)
The Komlós-Major-Tusnády approximations to increments of uniform empirical processes
arXiv:1201.5528 [math.ST] (Published 2012-01-26)
Non standard functional limit laws for the increments of the compound empirical distribution function