arXiv Analytics

Sign in

arXiv:0801.1730 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Extreme Value Statistics of Eigenvalues of Gaussian Random Matrices

David S. Dean, Satya N. Majumdar

Published 2008-01-11Version 1

We compute exact asymptotic results for the probability of the occurrence of large deviations of the largest (smallest) eigenvalue of random matrices belonging to the Gaussian orthogonal, unitary and symplectic ensembles. In particular, we show that the probability that all the eigenvalues of an (NxN) random matrix are positive (negative) decreases for large N as ~\exp[-\beta \theta(0) N^2] where the Dyson index \beta characterizes the ensemble and the exponent \theta(0)=(\ln 3)/4=0.274653... is universal. We compute the probability that the eigenvalues lie in the interval [\zeta_1,\zeta_2] which allows us to calculate the joint probability distribution of the minimum and the maximum eigenvalue. As a byproduct, we also obtain exactly the average density of states in Gaussian ensembles whose eigenvalues are restricted to lie in the interval [\zeta_1,\zeta_2], thus generalizing the celebrated Wigner semi-circle law to these restricted ensembles. It is found that the density of states generically exhibits an inverse square-root singularity at the location of the barriers. These results are confirmed by numerical simulations.

Comments: 17 pages Revtex, 5 .eps figures included
Journal: Phys. Rev. E, 77, 041108 (2008)
Categories: cond-mat.stat-mech
Related articles: Most relevant | Search more
arXiv:0811.2290 [cond-mat.stat-mech] (Published 2008-11-14)
Large Deviations of the Maximum Eigenvalue for Wishart and Gaussian Random Matrices
arXiv:1403.1185 [cond-mat.stat-mech] (Published 2014-03-05)
Phase transitions in the condition number distribution of Gaussian random matrices
arXiv:0910.0775 [cond-mat.stat-mech] (Published 2009-10-05)
The Index Distribution of Gaussian Random Matrices