arXiv:0801.1504 [cond-mat.stat-mech]AbstractReferencesReviewsResources
The Finite Temperature Pairing Gap of a Unitary Fermi Gas by Quantum Monte Carlo Calculations
P. Magierski, G. Wlazlowski, A. Bulgac, J. E. Drut
Published 2008-01-09, updated 2009-11-22Version 4
We calculate the one-body temperature Green's (Matsubara) function of the unitary Fermi gas via Quantum Monte Carlo, and extract the spectral weight function $A(p,\omega)$ using the methods of maximum entropy and singular value decomposition. From $A(p,\omega)$ we determine the quasiparticle spectrum, which can be accurately parametrized by three functions of temperature: an effective mass $m^*$, a mean-field potential $U$, and a gap $\Delta$. Below the critical temperature $T_c=0.15\varepsilon_F$ the results for $m^*$, $U$ and $\Delta$ can be accurately reproduced using an independent quasiparticle model. We find evidence of a pseudogap in the fermionic excitation spectrum for temperatures up to {$T^*\approx 0.20\varepsilon_{F} > T_c$}.