arXiv:0801.0823 [math.RT]AbstractReferencesReviewsResources
Classification problems for system of forms and linear mappings
Published 2008-01-05Version 1
We devise a method that reduces the problem of classifying systems of forms and linear mappings to the problem of classifying systems of linear mappings. Canonical matrices of (i) bilinear or sesquilinear forms, (ii) pairs of symmetric, skew-symmetric, or Hermitian forms, (iii) isometric or selfadjoint operators on a space with nonsingular symmetric, or skew-symmetric, or Hermitian form are obtained over any field of characteristic not 2 up to classification of Hermitian forms over its finite extensions.
Comments: 46 pages
Journal: Math. USSR-Izv. 31 (no. 3) (1988) 481-501
Categories: math.RT
Subjects: 15A21
Keywords: linear mappings, classification problems, hermitian form, classifying systems, nonsingular symmetric
Tags: journal article
Related articles: Most relevant | Search more
arXiv:0709.2470 [math.RT] (Published 2007-09-16)
Computation of the canonical form for the matrices of chains and cycles of linear mappings
arXiv:1308.4223 [math.RT] (Published 2013-08-20)
Topological classification of chains of linear mappings
Regularizing decompositions for matrix pencils and a topological classification of pairs of linear mappings