arXiv:0712.4033 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot
D. J. Reilly, J. M. Taylor, E. A. Laird, J. R. Petta, C. M. Marcus, M. P. Hanson, A. C. Gossard
Published 2007-12-24, updated 2008-10-20Version 3
In quantum dots made from materials with nonzero nuclear spins, hyperfine coupling creates a fluctuating effective Zeeman field (Overhauser field) felt by electrons, which can be a dominant source of spin qubit decoherence. We characterize the spectral properties of the fluctuating Overhauser field in a GaAs double quantum dot by measuring correlation functions and power spectra of the rate of singlet-triplet mixing of two separated electrons. Away from zero field, spectral weight is concentrated below 10 Hz, with 1/f^2 dependence on frequency, f. This is consistent with a model of nuclear spin diffusion, and indicates that decoherence can be largely suppressed by echo techniques.