arXiv Analytics

Sign in

arXiv:0711.3928 [math.NA]AbstractReferencesReviewsResources

A posteriori error estimates in the maximum norm for parabolic problems

Alan Demlow, Omar Lakkis, Charalambos Makridakis

Published 2007-11-25Version 1

We derive a posteriori error estimates in the $L_\infty((0,T];L_\infty(\Omega))$ norm for approximations of solutions to linear para bolic equations. Using the elliptic reconstruction technique introduced by Makridakis and Nochetto and heat kernel estimates for linear parabolic pr oblems, we first prove a posteriori bounds in the maximum norm for semidiscrete finite element approximations. We then establish a posteriori bounds for a fully discrete backward Euler finite element approximation. The elliptic reconstruction technique greatly simplifies our development by allow\ ing the straightforward combination of heat kernel estimates with existing elliptic maximum norm error estimators.

Journal: SIAM Journal on Numerical Analysis 2009 vol. 47 (3) pp. 2157-2176
Categories: math.NA, math.AP
Subjects: 65N30
Related articles: Most relevant | Search more
arXiv:1506.03292 [math.NA] (Published 2015-06-10)
A posteriori error estimates for discontinuous Galerkin method to the elasticity problem
arXiv:1802.02453 [math.NA] (Published 2018-02-06)
A Posteriori Error Estimates for Non-Stationary Non-Linear Convection-Diffusion Equations
arXiv:1703.04987 [math.NA] (Published 2017-03-15)
Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems