arXiv Analytics

Sign in

arXiv:0711.2925 [math.RT]AbstractReferencesReviewsResources

Spectral asymptotics for arithmetic quotients of SL(n,R)/SO(n)

Erez Lapid, Werner Mueller

Published 2007-11-19Version 1

In this paper we study the asymptotic distribution of the cuspidal spectrum of arithmetic quotients of the symmetric space S=SL(n,R)/SO(n). In particular, we obtain Weyl's law with an estimation on the remainder term. This extends results of Duistermaat-Kolk-Varadarajan on spectral asymptotics for compact locally symmetric spaces to this non-compact setting.

Related articles: Most relevant | Search more
arXiv:math/0311335 [math.RT] (Published 2003-11-19)
Weyl's law for the cuspidal spectrum of SL(n)
arXiv:1009.4507 [math.RT] (Published 2010-09-23, updated 2010-11-20)
On Extending the Langlands-Shahidi Method to Arithmetic Quotients of Loop Groups
arXiv:2504.01183 [math.RT] (Published 2025-04-01, updated 2025-05-05)
Explicit multiplicities in the cuspidal spectrum of SU(n,1)