arXiv:0711.2203 [quant-ph]AbstractReferencesReviewsResources
Switching effect upon the quantum Brownian motion near a reflecting boundary
Published 2007-11-14, updated 2007-11-16Version 2
The quantum Brownian motion of a charged particle in the electromagnetic vacuum fluctuations is investigated near a perfectly reflecting flat boundary, taking into account the smooth switching process in the measurement. Constructing a smooth switching function by gluing together a plateau and the Lorentzian switching tails, it is shown that the switching tails have a great influence on the measurement of the Brownian motion in the quantum vacuum. Indeed, it turns out that the result with a smooth switching function and the one with a sudden switching function are qualitatively quite different. It is also shown that anti-correlations between the switching tails and the main measuring part plays an essential role in this switching effect. The switching function can also be interpreted as a prototype of an non-equilibrium process in a realistic measurement, so that the switching effect found here is expected to be significant in actual applications in vacuum physics.