arXiv:0710.5014 [math.CO]AbstractReferencesReviewsResources
On $k$-noncrossing partitions
Emma Y. Jin, Jing Qin, Christian M. Reidys
Published 2007-10-26, updated 2007-11-15Version 2
In this paper we prove a duality between $k$-noncrossing partitions over $[n]=\{1,...,n\}$ and $k$-noncrossing braids over $[n-1]$. This duality is derived directly via (generalized) vacillating tableaux which are in correspondence to tangled-diagrams \cite{Reidys:07vac}. We give a combinatorial interpretation of the bijection in terms of the contraction of arcs of tangled-diagrams. Furthermore it induces by restriction a bijection between $k$-noncrossing, 2-regular partitions over $[n]$ and $k$-noncrossing braids without isolated points over $[n-1]$. Since braids without isolated points correspond to enhanced partitions this allows, using the results of \cite{MIRXIN}, to enumerate 2-regular, 3-noncrossing partitions.